

Harald Katzmair

Netzwerkanalysen. Theoretische Konzepte, Empirische Anwendungen, Zukunftsperspektiven

Elements of a Mapping

Key player analysis

Identify key player, insider, local player and peripherals
Key link analysis

- Identify key connections (strong ties)
- Identify those connections with the highest strategic impact

Cluster analysis

Identify opposing cliques and communities

The logical difference between attributes and relations

Attributs

- a is a man/woman
- a is 26 years old
- a is a dog owner
- a has an income of 26.000 \$
- a ist a blue collor worker

 $K = \{(a) / a \text{ is a student}\}$

Relations

- a is the boss of b
- a loves b
- a has the same hair colour as b
- a attends the same workshop as b
- a is the enemy of b

Relations are logically derived from a 2-digit proposition

 $R = \{(a,b) / a \text{ is a colleague of } b\}$

"is friend of " is the sumbol which is interpreted within the set of ordered pairs (cartesian product) = > the result of this interpretation is a logicval relation

Isiness

The logical difference between attributes and relations

From: Segmentation

To: Connection

How does the overall network structure determine the opportunity of the single agent?

Background

- Director interlock research as part of a more global interest in elite networks
- Analyze elite networks to learn and understand how dominant and prevailing networks are shaped (robustness, adaptability and evolvability)
- Specially interested in the operationalization of opportunity

Data

Since 2001 we have collected massive data-sets.

- Media (TV, newspapers, journals, etc.)
- Commercial register
- Internet
- Public and commercial databases

All together: **120,334 different persons** (with almost 9,000 people brokering between different social fields) and **25.748 affiliations**

Data Selection

	Persons	Affiliations	Links
Enterprises	21,252	8,108	34,564
Private Foundations	5,359	2,462	8,173
Media, Media Bodies,	7,094	2,858	10,009
Events (Local Celebrities)	6,579	2,480	14,476
Science, Technology	3,069	300	2,737
Public Health	22,262	4,472	27,119
Lobbies	324	68	388
Total Network – 2 Mode (5,605 brokering between social fields)	60,334	20,748	97,466
Total Network – 1 Mode	60,334	20,748	154,884

THE AUSTRIAN ELITE'S NETWORK (1mode)

Variables of success (and poverty)

How much knowhow someone has

Financial Capital

People who do better have a better financial background Human Capital

People who do better have better abilities and knowledge How much know-who one has

Social Capital

People who do better are somehow better connected

A heuristic approach on the concept of networks

Networks constitute the

intangible infrastructure of an agent

to produce, innovate, to adapt, and to create value.

Underlying Question

What are the overall structural conditions which enable agents (people, firms, organizations) to learn, to be creative, to solve problems, to create, exchange and accumulate value - even under conditions of internal and external failure, perpetuations and change?

The notion of robustness in the context of social networks

 The ability to peruse and realize a goal function or to adapt to a new goal function even under conditions of change (change of nodes, change of links, change of the context)

Different model classes of networks in terms of clustering, connectivity, density etc.

Real World Topologies

FROZEN REGIME		LIQUID REGIME

Network Fragments and Complexity

© FAS.research 2005

distance from dependency

Strong and weak ties

Strong ties

Weak ties

Two basic types of structural capital

cold

© 2007 FAS.research

2 oppositional evaluation functions of social capital

Network Analysis for Science and Business

Closure network values

Brokerage network values

2 oppositional story spaces

Loyalty Syndrom

Innovation Syndrome

Multi scale networks – Symmetric-Acyclic Heterarchies © 2007 FAS.research

Working class networks

Elite networks

Network Analysis for Science and Business

Closure Network

- Symmetric-acyclic Network
- Structural Holes Networks

liquified

FAS.research Search strategies over the space of opportunities Business

Working class networks

Search: Local and collective

Elite networks

Search: Local, global and collective

Middle class networks

Search: Local and **Global and** individual

liquified

frozen

© 2007 FASSearch strategies and opportunities not research independent from the morphology

- Multi peaked
- High plateau
- Single peaked
- Local peaked

Key arguments^{twork Analysis for Science and Business}

- The shape of the network landscape determines your opportunity
- Opportunity is not an individual feature. It's both a positional effect (role, centrality) and an effect of the network shape (captain-of-a-shipwreck phenomena)
- Your network shape is related to evaluation functions
- New measures combining morphology and position

Hypothesis to test

		Working Class	Middle Class	Elites
1.	Efficiency	Low	High	High
2.	Redundancy	High	Low	High
3.	Diversity	Low	Medium	High

Dimensions to operationalize

T

1.	Efficiency	 Short distances Low transaction costs for accessing, diffusing and exchanging information and resources
2.	Redundancy	 Common valorization systems (common convertible and exchangeable symbolic currencies) and common code through structural and/or regular equivalent settings Trust architectures and low costs of adoptability through structural and/or regular equivalent settings Modularity as form of structural redundancy
3.	Diversity	 Heterogeneity of partition classes Heterogeneity of functional roles indicates heterogeneity of accessible resources

L

Operationalize the opportunity space

T

1.	Efficiency	The (inverse distance weighted) number of reachable nodes in the k-step neighborhood
2.		The (inverse distance weighted) number of triangularized links of all the accessible nodes in the k-step neighborhood.
	Stability (Redundancy)	The (inverse distance weighted) number of squared links of all the accessible nodes in the k-step neighborhood.
		The (inverse distance weighted) number of k-star links of all the accessible nodes in the k-step environment
3.	Diversity	The (inverse distance weighted) k-step entropy (bits per node) of the accessible nodes based on affiliation attributes

.

triangle redundancy (short cycle connectivity)

k-star redundancy

Network Analysis for Science and Business

Diversity

Entropy as Measure of Diversity Network Analysis for Science and Business

$$H = -\sum_{i=1}^{s} (p_1) (\log_2 p_i)$$

 $\begin{aligned} H &= Shannon / Wiener Diversity Index \\ p_i &= the proportion of the network \\ represented by partition class i \end{aligned}$

Information content is a measure of the amount of uncertainty, so the larger the value H, the greater the uncertainty. A social network which is made up of 5 persons who are all males has a no uncertainty in it with regard to gender, and H = 0.

Interests

- Collect data, improve models
- Test framework and hypothesis over the different morphologies
- Most difficult point (like always): find a dependent variable to test the influence of network-shapes on the "fitness" of the node AND the network.
- The link between the story space (semantic network analysis) and the morphological analysis not elaborated. Different stories as accountants and testimonials for different evaluation functions.

© 2007 FAS.research

Network Analysis for Science and Business

Future of SNA?

THE SCIENTIFIC FIELD OF AUSTRIA

Co-occurrence of assigned scientific classification codes in 5217 projects funded by the Austrian Sciences Fund (FWF) from 1994 to April 2004

THE SCIENTIFIC FIELD OF AUSTRIA

Co-occurrence of assigned scientific classification codes in 5217 projects funded by the Austrian Sciences Fund (FWF) from 1994 to April 2004

© 2007 FAS.research

Network Analysis for Science and Business

Harald Katzmair

Danke fuer Ihre Aufmerksamkeit